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Abstract 

This study focused on the investigation of the structural and operational complementarity in the 

simplification of algebraic expressions. The dual nature of mathematical conceptions is the 

theoretical framework that underpin this study. Qualitative content analysis was employed as a 

method and research design to investigate the complementarity between the operational and 

structural learners’ conceptions of the simplification. The findings revealed that learners’ 

undeveloped and fragmented structures of algebra caused the inability to simplify expressions. 

Ironically, for the very few learners who managed to simplify expressions, used skills and 

knowledge of the previous grade. Irrespective of this, the complementarity of learners’ 

conceptions of systems and components is undoubtfully key to their success during the 

simplification of expressions. This study recommends teaching and learning of algebra should 

address the complementarity of the operational and structural notions. 

Keywords: indeterminate, object, operational, structural 

 

INTRODUCTION 

Globally, studies on the simplification of algebraic 
expressions ponders discursive computational 
conceptual algebraic pitfalls and gains (Faramarzpoor & 
Fadaee, 2020; Novotná & Hoch, 2008; Tirosh et al., 1998). 
The computational pitfalls and gains are reported in 
diverse focus, such as, insights and analysis of errors and 
mistakes (Pournara et al., 2016; Seng, 2010), exploration 
of misconceptions and errors (AL-Rababaha et al., 2020; 
Baidoo, 2019; Faramarzpoor & Fadaee, 2020), awareness 
of teachers and related teaching approaches (Chalouh & 
Herscovics, 1988; Tirosh et al., 1998). A coherent 
understanding of the pitfalls and gains of mathematical 
conceptions requires theoretical shift that is coherent. I 
use the words, ‘concepts’ and ‘conceptions’ 
interchangeably, the former, also called ‘notions’ 
referring to theoretical aspects mathematical ideas while 
the latter posits the internalized human knowing. 
Mathematical conceptions hinge on two complementary 
notions, both structural and operational (Sfard & 
Linchevski, 1995). Literature (Baidoo, 2019; 

 
  This article is based on available data from the dissertation of the author conducted in the institution of affiliation. 

Faramarzpoor & Fadaee, 2020; Seng, 2010; Tirosh et al., 
1998) classifies the concepts into both operational and 
structural. The operational (process-oriented), are 
routines and computations, which (Sfard & Linchevski, 
1995) argues that it emerges first during interiorization. 
The routines refer to specific steps and procedures 
followed in the simplification (Faramarzpoor & Fadaee, 
2020), while computations refer to the ability of handling 
operations related to components, structures, and 
routines (Seng, 2010). In contrast, the structural (object-
oriented), refers to components and systems (Linchevski 
& Livneh, 1999), which develop afterwards through the 
process of reification (Sfard, 1995). On one hand, 
components posit the distinct parts of algebraic 
expressions such as variables, numbers, brackets, 
operations and notation (Kieran, 1992, 2007). On the 
other hand, systems are algorithms and concepts that are 
specific for algebra concepts (Novotná & Hoch, 2008).  

Algebra consists of symbols, numbers, and variables 
(Kieran, 2007). Correspondingly, numbers and variables 
are among various representations of explicit and 
implicit quantities (Booth, 1988). Kieran (1992) and 
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Mason (1996) refer to these quantities as either the 
particular or abstract entities. The description of the 
schema, properties, and relationships of these abstract 
entities, which Novotná and Hoch (2008) refer to as 
structural. In contrast, algorithms and computations that 
guide the utility of the abstract entities Sfard and 
Linchevski (1995) refers to as operational. Structural, 
algebraic expressions emanate from the generality of 
numeric expressions using variables to represent 
unknown quantities (Moodliar & Abdulhamid, 2021; 
Warren, 2003). In fact, they are indeterminate (Sfard, 
1995), such as, ‘4𝑥 + 3’. It is configured using 
alphanumeric, the generic (4𝑥), the sign (+), and a 
numeral (3) hence it posits an indeterminate quantity 
(Tirosh et al., 1998). Contrary, operational this 
expression depicts, ‘add four times 𝑥 and three’, in 
particular ‘𝑥’ represents the general.  

Noticeable, during algebra instruction, the 
simplification of expressions in earlier grades of 
schooling evolves from numeric to alphanumeric 
(Baidoo, 2019; Carraher et al., 2007). Structural, the 
simplification of algebraic expressions relies on the 
mastery of other algebra concepts such as equations and 
exponents (Baidoo, 2019; Warren, 2003). Such mastery is 
most likely to posit gains and contrary a deficit of the 
algebra concepts results in pitfalls. On this notion, the 
indeterminate nature of algebraic expressions is a recipe 
for operational conceptions (Sfard, 1995). Conceptions 
based on features, schema and relationships are gains for 
the simplification of algebraic expressions (Carraher & 
Schliemann, 2007). Hence, algebra instruction should 
equip learners with structural sound concepts relevant 
for the operational simplification of algebraic 
expressions. 

I define the simplification of algebraic expressions as 
the process of their decomposition into simpler versions. 
It posits a gain by enabling learners to distinguish both 
the relevant processes and the objects for this domain 
from other related algebra concepts such as 
factorization, operations, and exponential laws (AL-
Rababaha et al., 2020; Tirosh et al., 1998). Specifically, 
Pournara et al. (2016) and Seng (2010) ascertain the 
existence of a wide range of concepts required for 
simplifying expressions, such as, grouping like terms, 
expanding brackets, handling basic operations and 
attachment of notation and signs. In addition, the grasp 
of the concept of numbers and fraction remain critical 

aspects of mastering algebra (Bansilal & Ubah, 2020; 
Booth et al., 2014). 

Learners often experience discursive pitfalls that are 
associated with both the structural and operational 
knowledge when simplifying algebraic expressions. 
Literature (AL-Rababaha et al., 2020; Bansilal & Ubah, 
2020; Faramarzpoor & Fadaee, 2020; Herscovics & 
Linchevski, 1994; Linchevski & Herscovics; 1996; 
Pournara at al., 2016; Seng, 2010), points to various 
challenges. First, is the misuse of algebra rules, such as 
the distributive law and BODMAS, in the earlier grades 
of high school. Second, confusing arithmetic concepts 
with those of algebra by introducing the equal sign. 
Third, misconceiving algebraic expressions as 
determinate through assigning numerical values. 
Fourth, oversimplification and incorrect cancellation. 
Fifth, misconceiving structures of algebraic expressions 
by conjoining unlike terms during simplification. Amid 
all these vast learners’ challenges reported in the 
literature, the complementarity of the structural and 
operational simplification of algebraic expressions 
remains unclear, which pose a knowledge gap. Hence, 
the purpose of this study is to investigate the structural 
and operational complementarity in the simplification of 
algebraic expressions. Learners’ pitfalls when 
simplifying algebraic expressions were vital in achieving 
the purpose. The following research question was:  

▪ How do learners operational and structural 
conceptions complement when simplifying 
algebraic expressions? 

The current study taps into available data (Dhlamini, 
2018) and uses the theory of the dual nature of 
mathematical conceptions (DN) (Sfard, 1991) to 
succinctly explain the simplifying of algebraic 
expressions.  

THEORETICAL UNDERPINNINGS 

DN (Sfard, 1991) posits an interplay between two 
complementary tenets, the operational as a process and 
the structural as an object of the simplification of 
algebraic expressions (Figure 1). Sfard (1995) explained 
that in most mathematics notions, the operational 
process precedes the structural object, except for 
geometry, where it is vice versa. Otte (1990) argued for 
the complementarity of mathematical objects and tools 
in the sense they simultaneously differ in structure, 

Contribution to the literature 

• This study re-emphasizes benefits of the complementarity of mathematical conceptions, especially 
algebra. 

• It highlights that current literature in the discourse of algebra is skewed towards the operational 
disregarding the importance of systems and components of algebra.  

• The study revealed that conceptions of the structures and systems of algebra conceptions are determinant 
on learners’ recontextualization. 
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nonetheless they relate operational. Similarly, Vithal 
(2008) perceives complementarity as extraordinary 
means of explicating the co-existence of considerably 
distinct, even contrary object, which explains the same 
process. For an example, Seng (2010) outlined a learner 
who simplified the expression ‘3𝑎 − 6𝑎’ to ‘3𝑎’. When 
interviewed, the learner said, ‘I take 6𝑎 and minus 3𝑎 so 
I got 3𝑎’ (p. 150). This learner incorrectly used concepts 
of arithmetic, i.e., a large value minus small value. 
Instinctively, ‘3𝑎 − 6𝑎’ as an object, consist of distinct 
indeterminate components, ‘3𝑎’, positive alpha numeric 
indeterminate term of the expression, ‘−’, a minus sign 
(Jiang et al., 2014), ‘−6𝑎’, negative numeric 
indeterminate term of the expression. Contrary, as a 
process 3𝑎 − 6𝑎’ depicts subtracting a negative from a 
positive. Yet, the minus here is an operation depicting a 
subtraction, positing complementarity. The 
indeterminate terms, postulate algebra components, like 
terms, which can be subtracted. 

On the one hand, the operational process is 
characterized by two tenets, interiorization and 
condensation. During simplification of algebraic 
expressions, learners manipulate components and 
systems using properties, rules, concepts and algorithms 
to develop new mental conceptions, and this is referred 
to as interiorization (Scheiner, 2016). Subsequently, 
learners grasp the compact bigger picture of concepts in 
a process called condensation (Chimoni & Pitta-Pantazi, 
2017; Thompson & Sfard, 1994). For an example, in the 
study conducted by Pournara (2020), a learner simplified 
as follows: ‘−3𝑥 + 𝑥’ to ‘−4𝑥’. Such manipulation 
signifies that integers addition rule is misapplied in 
algebra and depicts the learner not grasping 
condensation. In contrast, Irwati and Ali, (2018) 
discovered a learner who added 4 + 3𝑥2 to get 7𝑥2. This 
illustrates further the learners’ disregard of the 
indeterminate nature of components of algebraic 
expressions (Moodliar & Abdulhamid, 2021). In contrast, 
Ndemo and Ndemo (2018) studied the simplification of 
𝑥(𝑎 + 𝑏) ÷ 𝑥(𝑎 + 𝑏), the learner rewrites and expands 

brackets as 
𝑎𝑥+𝑏𝑥

𝑥+𝑥𝑑
, cancels the ′𝑥𝑠′ and the answer was 

𝑎+𝑏

𝑑
. 

This learner posits misapplication of division in an 
algebraic expression. In the three studies, learners 

indicate having imbalance between interiorization and 
condensation.  

On the other hand, during the structural object, 
learners’ master the indeterminate algebra structures 
and components of algebraic expressions through 
balancing interiorization and condensation to postulate 
reification (Chimoni & Pitta-Pantazi, 2017; Linchevski & 
Livneh, 1999). To master the structural object, learners 
first engage with three tenets during the operational 
process that are both contrasting and complementary 
(Zeljić, 2015). These are fundamental in balancing 
interiorization, and condensation, they are, 
contextualizing, complementizing and complexifying 
(Schneider & Pinto 2019). For contextualization, learners 
extract meaning of an object dependent on, how it is 
represented, the context, where it is used, the 
mathematics domains, where it resides and how is 
recontextualized (van Oers, 1998). In contrast, during 
complementizing, learners should co-ordinate various 
contexts to create coherent conceptual structures 
(Scheiner, 2016). The other notion, complexifying, 
prescribes that learners should be enabled to navigate 
from simple conceptual structures to complex structures 
through recontextualizing, and coherently co-ordination 
conceptual structures (Schneider & Pinto 2019). 
However, in the simplification of algebraic expressions 
complexification is recontextualized in the reverse, from 
complex to simple (Moodliar & Abdulhamid, 2021). All 
these is the key balancing factors of interiorization and 
condensation, which is explicated using empirical 
literature below.  

I reflect on a learners’ responses extrapolated from 
three empirical studies on the simplification of algebraic 
expressions to clarify the structural object. First, 
Faramarzpoor and Fadaee (2020) reported a learner who 
simplified 9𝑏2 + 4𝑏2, and the answer was 13𝑏4. The 
components of the algebraic expression, ‘9𝑏2’, and ‘4𝑏2’, 
are alphanumeric like terms (AL-Rababaha et al., 2020), 
they can be simplified further only by addition. When 
confronted with the exponents, the learner 
recontextualizes to the domain of multiplying 
exponents. Similarly, in Zulfa et al. (2020) a learner 

simplified 
5

𝑎
+

20

𝑎
 to get 

25

𝑎2
. This simplification posits 

misconceived recontextualizing addition to 
multiplication of exponents, causing imbalance to 
interiorization and condensation. Hence, such posits in 
undeveloped reification and the structural object of the 
simplification of algebraic expressions.  

METHODS  

This study employed the qualitative content analysis 
as method and research design (Elo & Kyngäs, 2008) to 
elucidate learners’ simplification of algebraic 
expressions. This approach is flexible on the procedures 
a study can undertake as guided by the research problem 
(Harwood & Garry, 2003). The study purposively 

 
Figure 1. Conceptual framework for DN (Source: Author’s 
own elaboration) 
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sampled ninety (n=90) learners’ scripts from available 
data (Dhlamini, 2018).  

Structural and operational learners’ simplification of 
algebraic expressions required explanations and 
descriptions as per guidance from the literature 
(Schreier, 2012). Hence, two experienced mathematics 
educators coded the learners’ responses. The research 
processes were in the following sequence. First, 
preparation phase, involved sourcing available data on 
algebraic expressions, and learners’ simplification. The 
COVID-19 regulation has made it difficult and almost 
impossible to access research sites such as schools. In the 
mist of this pandemic, critical issues remain unclear and 
even missing in the literature and require urgent 
attention. Hence, available data from previous bigger 
study (Dhlamini, 2018) elucidate silent issues in the 

simplification of algebraic expressions. Making sense of 
the data started with the review of the process and object 
as posed by algebraic expressions. Then, familiarization 
of the learners’ simplification of algebraic expressions 
with reference to literature in the discourse. Second, the 
organizing phase followed three processes, coding, 
creating categories, and abstraction (Schreier, 2012).  

When conducting open coding (Table 1), the 
learners’ algebra simplification procedures generated 
categories. To reach abstraction categories were both 
collapsed and refined. Third, data analysis and 
interpretation: inductive analysis was conducted, from 
open coding (Table 1) of the learners’ response’s themes 
emerged (Braun & Clarke, 2006). Concurrently, the data 
analysis was guided by the theoretical basis (Figure 1). 
During interpretation, the theoretical prescripts of DN 

Table 1. Codes for learners’ algebraic simplification 

Coding algebraic simplification 

AS3.1A: Process, used inappropriate 
ingredients for simplification neither 
expansion nor factoring common 
factor, resulting in operational 
irrelevant simplification. Object, 
failure to grasp components, unlike 
terms and exponents negatively 
affected knowledge of systems. 

AS3.1B: Process, expansion inside 
brackets, as ingredients for 

simplification; however, operational 
irrelevant simplification of expression 
due to various irrelevant computations 
such as, failure to manage minus sign, 
misapplication of exponential rules, & 

brackets, conjoining unlike terms & 
mishandling of BODMAS rule. Object, 

although learners realized systems such 
as expansion, which could not filter into 
components, unlike terms & exponents.  

AS3.1C: Process, expansion inside 
brackets, grouping like terms, 

appropriate handling of minus sign 
and brackets, resulting in relevant 
simplification. Object, led to grasp 

of the indeterminate nature of 
components of the expression, and 

the realization of systems, like 
terms, to reach the simpler version 

of the expression. 

AS3.2A: Process, used inappropriate 
ingredients for simplification neither 
add like terms & divide nor use 
common denominator, resulting in 
operational irrelevant simplification. 
Object, failure to realize systems, 
division, led to mishandling of 
components, exponents. 

AS3.2B: Process, add, divide by ′8𝑥2𝑦3′ 
as ingredients for the simplification, 

however operational irrelevant 
simplification due to misapplication of 
exponential rules. Object, realization of 
systems, division, could not transfer to 

the components, exponents. 

AS3.2C: Process, add and divide by 
′8𝑥2𝑦3′, resulting in relevant 

simplification. Object, realization of 
systems, the divisor, which enabled 

the handling of components, like 
terms, to reach the simpler version. 

AS3.3A: For process, used unfit 
ingredients for simplification, 
misapplication of exponential rules, 
conjoining unlike terms, irrelevant 
cancelling resulting in operational 
irrelevant simplification. Object, 
failure to grasp systems of division, 
negatively affected grasp of 
components, divisors. 

AS3.3B: Process, factors, & divisor (𝑥 −
4) as ingredients for simplification is 

appropriate; however, operational 
irrelevant simplification due to various 

incorrect computations such as 
factorization & cancelling. Object, 

learners’ recognition of systems could 
not assist in managing components, 

factorization, & division. 

AS3.3C: Process, factors, and divisor 
(𝑥 − 4) as ingredients for the 

simplification, resulting in 
operational relevant simplification. 

Object, consciousness of 
components, the divisor, which 

allowed handling of systems 
factorization and division to reach 

the simpler version. 

AS3.4A: Process, could not use 
common denominator as an 
ingredient for simplification, causing 
the mishandling of exponential rules 
which resulted in operational 
irrelevant simplification. Object, 
failure to grasp systems, divisor, led 
to mishandling of components. 

AS3.4B: Process, like terms, common 
denominator as ingredients for the 
simplification, however operational 

irrelevant simplification due to 
mishandling computations involving 

the common denominator. Object, grasp 
of systems, divisor, could not filter into 

components, divisors. 

AS3.4C: Process, like terms, 
common denominator as 

ingredients for simplification, 
resulting in operational relevant 

simplification. Object, realization of 
common denominator in 

components of non-equivalent 
fractions, which permitted handling 

of systems involving operations 
(addition & subtraction) to reach 

simpler version of expression. 
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theory (Sfard, 1991) and literature on simplification of 
algebraic expression interrogated the results.  

RESULTS  

The overall results posit that learners’ simplification 
algebraic expressions had three categories. First, a bulk 
of results were learners who exhibited both irrelevant 
process and object for the simplification of algebraic 
expressions. This reveals the absolute lack of the 
indeterminate conceptions for structures of algebraic 
expressions and the corresponding computations of its 
systems. Second, a few results were learners with both 
fragmented process and object for the simplification. This 
exposes imbalances in the grasp of the structures and 
systems. Third, were very few results for learners 
relevant operational and structural. This posits the 
application of relevant systems, which enabled the 
handling of components of algebraic expressions. 

How Learners Simplified Algebraic Expressions 

The data in Table 2 is a synopsis that indicates the 
trend on learners how learners simplified the algebraic 
expressions. The data is skewed towards irrelevant, 
process and object, positing vast challenges related to the 
simplification of algebraic expressions. A small quantity 
of the data was in process and object fragmented revealing 
limited skills of the simplification. A very small portion 

of the data was in process and object relevant, signifying 
the existence of learners with knowledge and skills of 
simplifying algebraic expressions. 

Theme 1: Process & Object Irrelevant Simplification 

In Figure 2, are vignettes (part a, part b, part c, & part 
d), for a sample of learners’ responses in this theme. 
First, learner A’s simplification of question 3.1, one of 76 
out of 90 coded as AS3.1A. For the process, this learner 
conjoined unlike terms, 5𝑥2, (𝑥 + 2)2to 2𝑥2, (2𝑥 − 1) to 
1𝑥, (𝑥 + 2) to 2𝑥, misapplied exponential laws and 
BODMAS rule, 2(2𝑥)2 − (1𝑥)(2𝑥) to 2𝑥2 + 2𝑥 − 1𝑥 + 2. 
Further in the process, the learner conjoined unlike terms, 
misapplied exponential laws 2𝑥2 + 2𝑥 + 1𝑥 and 
eliminated the number ‘two,’ to reach a simpler version 
5𝑥2 (part a in Figure 2). This implies that, for the object, 
the learner failed to grasp systems required for 
simplification of components, such as unlike terms and 
exponents. Second, learner B’s simplification of question 
3.2 coded AS3.2A and one of 81 out of 90 classified in this 
theme. The process, the learner incorrectly cancelled the 
numbers in both the numerator and denominator, 
15𝑥2𝑦3+9𝑥2𝑦3

8𝑥2𝑦3
 to 

1𝑥2𝑦3+𝑥2𝑦3

𝑥2𝑦3
 misapplied exponential law, 

mishandled the minus signs in the exponents, 
1𝑥𝑦2−3+𝑥𝑦2−3

𝑥2𝑦3
to get

1𝑥𝑦+𝑥𝑦

𝑥2𝑦3
. Finally, the learner incorrectly 

cancelled, 
1𝑥𝑦+𝑥𝑦

𝑥2𝑦3
 to reach an irrelevant simpler version, 

Table 2. Documenting learners’ simplification of algebraic expressions 

Learners’ responses to the simplification of algebraic expressions (F [%]) 

Questions Irrelevant process & object Fragmented process & object Relevant process & object Total frequency 

Question 3.1 76 (84.45) 13 (14.44) 1 (1.11) 90 (100) 

Question 3.2 81 (90.00) 1 (1.11) 8 (8.89) 90 (100) 

Question 3.3 84 (93.33) 5 (5.56) 1 (1.11) 90 (100) 

Question 3.4 80 (88.89) 3 (3.33) 7 (7.78) 90 (100) 
 

 
Figure 2. Learners’ structural & operational irrelevant simplifications (Dhlamini, 2018) 
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1 + 𝑥𝑦, (part b in Figure 2). The coding posits that this 
learner neither realized systems of the components, the 
addition of like terms, division nor common 
denominator as the object. Third, learner C’s 
simplification of question 3.3 was coded AS3.3A, which 
was one of 84 out of 90 classified in this theme. In the 
process, the learner correctly applied law of exponents, 𝑥2 
to ‘𝑥. 𝑥’ in the denominator and numerator. Learners 
unbundle exponents when preparation for factorization. 

Instead, the learner incorrectly cancelled 
𝑥.𝑥

𝑥.𝑥
, divided 

−4𝑥

−2𝑥
 

detached ‘−8, mishandled the minus signs in the 
division to reach an incorrect simpler version, −2 (part c 
in Figure 2). During coding, the object, the learner neither 
used systems for factorization nor components, the 
divisor (𝑥 − 4) as ingredients for the simplification. 
Forth, learner D’s simplification of question 3.4 was 
coded AS3.4A one of 80 out of 90 classified in this theme. 
For the process, the learner misapplied the addition and 
subtraction of fractions. The learner observed BODMAS 
rule (addition first) and did not use the common 

denominator when adding 
𝑥

2
+

2𝑥

3
 to 

2𝑥2

5
. Afterward, 

subtraction, again not obeying the common 

denominator, 
2𝑥2

5
−

7𝑥2

6
 to 

9𝑥2

−1
, (part d in Figure 2), which 

was an incorrect simpler version. For object, the learner 
could not use correct systems of components, common 
denominator as an ingredient for the simplification. 

Theme 2: Process & Object Fragmented Simplification 

Figure 3 consist of vignettes (part a, part b, part c, & 
part d), for sampled learners’ responses in theme 2. First, 
learner E’s simplification of question 3.1 was coded 
AS3.1B, one of 13 out of 90 classified in this theme. 

During the process, the learner handled properly the 
distributive law and minus sign when applying the 
BODMAS rule (part a in Figure 3). However, the learner 
detached the symbol ‘X’ from the number ‘4’ in the 
second set of brackets during the expansion, [2𝑥(𝑥 +
2) − 1(𝑥 + 2)]𝑡𝑜[2𝑥2 + 4 − 𝑥 − 2]. Further there was an 
incorrect addition, 4𝑥 + 4𝑥 + 𝑥 to 7𝑥. Consequently, the 
simpler version was 7𝑥 + 6, (part a in Figure 3), not the 
correct answer. For the object, the learner recognized the 
systems for simplification and could not reach the 
required simpler version due to mishandling of 
components. Second, learner F’s simplification of 
question 3.2 was coded AS3.2B, one out of 90 classified 
in this theme. During the process, the learner failed to 
realize like terms and misapplied exponential laws by 
using multiplication law of exponents instead of 
addition, 15𝑥2𝑦3 + 9𝑥2𝑦3 to 24𝑥4𝑦6. The further 

simplification was correct 
24𝑥4𝑦6

8𝑥2𝑦3
 to 3𝑥2𝑦3 (part b in 

Figure 3), although incorrect simpler version due to the 
earlier misapplication of exponential rules. In the object, 
by not realizing components, like terms, the learner 
misapplied exponential rules. Third, learner G’s 
simplification of question 3.3 was coded AS3.3B, one of 
five out of 90 classified in this theme. During the process, 
the learner incorrectly factorized in the numerator, 𝑥2 −
4𝑥 to (𝑥 − 2𝑥)(𝑥 + 2𝑥). Here the learner computed the 
difference of two squares instead of factoring ‘𝑥. 
Factorization in the denominator was appropriate. 

Further the learner detached ‘ x ‘ from (𝑥 − 2𝑥)(𝑥 + 2𝑥) 
to divide by (𝑥 + 2) to reach an incorrect simpler version 
𝑥−2

𝑥−4
, (part c in Figure 3). For the object, the learner 

misconceived the systems of factorization. 

 
Figure 3. Learners’ structural appropriate & operational irrelevant simplifications (Dhlamini, 2018) 
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Forth, learner H’s simplification of question 3.4 was 
coded AS3.4B, one of three out of 90 classified in this 
theme. For the process, the learner misapplied rules of 
converting equivalent fractions, as follows:  

1. 
𝑥2

2
 to 

𝑥2

6
 and  

2. 
2𝑥2

3
 to 

2𝑥2

6
.  

During the simplification, the learner incorrectly 
performed the addition of fractions like terms with same 

denominator, 
𝑥2

6
+

2𝑥2

6
 to 

2𝑥2

6
. Further, the learner 

incorrectly subtracted like terms, and attached ‘𝑥’ in the 

denominator as follows: 
2𝑥2

6
−

7𝑥2

6
 to 

3𝑥

1.16𝑥
, (part d in 

Figure 3) a simpler version, not the required one due to 
the fragmented simplification. The learner used the 
common denominator, In the object, the learner 
misapplied the systems of division, which filtered to the 
mishandling of the components. 

Theme 3: Process & Object Relevant Simplification 

Figure 4 are vignettes (part a, part b, part c, & part d), 
for sampled learners’ responses that classified in this 
theme. First, learner L’s simplification of question 3.1 
was coded AS3.1C, one out of 90 classified in this theme. 
During the simplification, the process is the accuracy of 
the expansion of brackets 2(𝑥2 + 2𝑥 + 2𝑥 + 4) − (2𝑥2 +

4𝑥 − 𝑥 − 2). In addition, the learner efficiently managed 
the distributive law and the minus sign 2𝑥2 + 4𝑥 + 4𝑥 +

8 − 2𝑥2 − 3𝑥 + 2. Further, the learner appropriately 
grouped like terms 2𝑥2 − 2𝑥2 + 8𝑥 − 3𝑥 + 8 + 2, 
correctly applied BODMAS rule to reach the required 
simpler version 5𝑥 + 10, (part a in Figure 4). The object is 
the proper handling of the systems of BODMAS, which 
hinges on the indeterminate nature of the components, 
like terms and exponents. Second, learner J’s 

simplification of question 3.2 was coded AS3.2C, one of 
eight out of 90 classified in this theme. For the process, the 
learner divided the two terms of the numerator by the 

denominator, 
15𝑥3𝑦3+9𝑥2𝑦3

8𝑥2𝑦3
 to 

15+9

8
. Then simplified the 

fraction to get the simpler version ‘3’ (part b in Figure 4). 
The object is the by realization of systems of division, 
which enabled the handling of components, the divisor 
and like terms Third, learner K’s simplification of 
question 3.3 was coded AS3.3C, one out of 90 classified 
in this theme. In the process, the learner factorized both 
the numerator and the denominator, then divide by 𝑥 −

4 to reach the simpler version
𝑥

𝑥+2
, (part c in Figure 4). The 

object assisted the learner to be conscious of relevant 
components, the divisor, which allowed the 
simultaneous handling of systems factorization and 
division. Forth, learner L’s simplification of question 3.4 
was coded AS3.4C, one of seven out of 90 classified in 
this theme. During the process, the learner converted the 

expression to a common denominator ‘6’ 
3𝑥2+4𝑥2−7𝑥2

6
. 

Then the learner appropriately applied BODMAS rule 
for addition and subtraction in the numerator reach the 
simpler version ‘0 (part d in Figure 4). For the object, the 
learner realized the common denominator in 
components of non-equivalent fractions, which 
permitted the handling of systems involving basic 
operations. 

DISCUSSION 

The purpose of this study is to investigate the 
structural and operational complementarity in the 
simplification of algebraic expressions. To achieve this, 
DN theory (Sfard, 1991) clarified learners’ simplification 
of algebraic expression in various ways as underpinned 
and anchored by the two tenets the object and process. 

 
Figure 4. Learners’ structural & operational relevant simplifications (Dhlamini, 2018) 
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On one hand, the process posed two categories, 
interiorization and condensation. Interiorization was 
sought from learners’ simplification using various 
properties, rules, and algorithms from four algebraic 
expressions. To reach condensation, the evaluation 
focused on how learners interiorized these aspects to 
understand the indeterminate nature of algebraic 
expressions. On the other hand, the object was sought 
from contextualizing, complexifying and 
complementizing to deduce balance between 
interiorization and condensation, a process known as 
reification (Schneider & Pinto 2019). Furthermore, the 
theoretical interrogation of learners’ simplification of 
algebraic expressions hinges on the learners’ context, 
recontextualization, from complex to simple 
(Faramarzpoor & Fadaee, 2020).  

The most worrying results were the bulk of learners 
who could not handle the systems and components of 
the simplification resulting in pitfalls related to 
irrelevant process and object. The pitfalls are associated 
with the following concepts, misapplication of 
exponential and BODMAS rules, mishandling of the 
minus sign, incorrect cancelling in algebraic fractions, 
conjoining of unlike terms. The misapplication of the 
exponential rules and incorrect cancelling suggests 
irrelevant recontextualization, which misappropriates 
the interiorization of concepts and procedures of 
simplifying algebraic expressions (Schneider, 2016; 
Baidoo, 2019). Consequently, condensation is based on 
inappropriate concepts and systems of simplifying 
algebraic expressions causing inappropriate reification 
(Chimoni & Pitta-Pantazi, 2017). These results are 
consistent with those reported by both Baidoo et al. 
(2020) and Ndemo and Ndemo (2018). The major 
difference is that in these previous studies, the results 
were skewed towards reporting only the operational 
process. In contrast, there are various inconsistencies in 
relation to learners’ mishandling of concepts systems 
and structure of algebraic expressions. Such are, 
conjoining of unlike terms (Moodliar & Abdulhamid, 
2021), also showing (part a in Figure 2) and mishandling 
of the minus sign (part d in Figure 2) as reflected by 
Pournara (2020). On the one hand, the conjoining of 
unlike terms is evidence of irrelevant recontextualization 
(Schneider, 2016), of algebra using rules, concepts and 
algorithms of integers (Baidoo et al., 2020). On the other 
hand, the inappropriate application of the minus sign, 
signals learners’ imbalance towards the 
complementizing of the dual nature, as a sign and as an 
operator (Jiang et al., 2014; Zeljić, 2015). The bulk of 
learners categorized in the theme irrelevant process and 
object, point to inappropriate balance of interiorization 
and condensation in all aspects of DN (Figure 1) 
including complexifying (complex to simpler) the 
simplification of algebraic expressions (Moodliar & 
Abdulhamid, 2021). 

A few results indicated that learners posited various 
gains and pitfalls during simplification due to 
fragmented process and object. The positives in this 
category are various gains of, proper handling of the 
distributive law, minus sign (part a in Figure 3), relevant 
factorization, realization of the LCD (part b in Figure 3).  

The gains posit some traits of relevant learners’ 
manipulation of algebra concepts and systems at the 
level of interiorization (Schneider, 2016). These results 
are similar to those reported in other studies in this 
domain (Irwati & Ali, 2018; Ndemo & Ndemo, 2018; 
Zulfa et al., 2020). Simultaneously the results are 
worrisome due to numerous pitfalls that resulted from, 
detaching negative symbols in terms (part d in Figure 3), 
misapplication of laws of exponents (part b in Figure 3), 
and misapplied factorization (part c in Figure 3).  

These are attributed to both improper 
recontextualizing of laws of integers in exponents 
(Pournara, 2020; Schneider & Pinto 2019) and misuse in 
irrelevant domain (Schneider, 2016). Consequently, 
learners could not grasp a coherent conceptual structure 
(condensation) of the simplification, positing 
fragmented complexification. Hence the simplification is 
characterized by imbalances between interiorization and 
condensation and not reaching reification in this domain 
(Baidoo et al., 2020; Zeljić, 2015).  

Moreover, it was most disturbing to discover from 
the results that very few learners correctly simplified 
algebraic expressions. These results were ascribed to 
appropriate interiorization of manipulated concepts, 
systems and procedures of simplifying algebraic 
expressions (Schneider, 2016). The results pointed the 
consistency of handling algebra rules, concepts, of signs, 
division of fractions. exponential laws consistent with 
those reported in other studies (Irwati & Ali, 2018; 
Pournara, 2020). As a consequence, learners grasped 
complexification of the simplification of algebraic 
expressions (Schneider & Pinto, 2019). Hence there is 
balance between interiorization and condensation a 
signal for reification.  

However, there results were worrisome, the 
curriculum (Department of Basic Education [DBE], 2011) 
specifies that grade nine learners should accomplish 
simplification using factorization. In contrast, 
simplification using BODMAS rule (expansion) is an 
outcome that should be achieved in the previous grades, 
eight and seven. This signifies that these grade nine were 
exhibiting grade eight skills of simplification. 

CONCLUSIONS  

This study contributes to the complexification of 
algebraic expressions from recontextualization and 
complementizing. DN permitted the study to harvest 
silent issues in the literature, especially the role of the 
object in algebra conceptions. The structural object has the 
potential of empowering learners with complexities of 
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conceptions required for the simplification of algebraic 
expressions. Hence the importance of complementarity 
in the manipulation of properties, skills, algorithms, 
operational process and their corresponding abstract 
conceptions, structural object proved as remedies for the 
simplification of algebraic expressions.  

The current study responded to the following 
research question: How do learners operational and 
structural conceptions complement when simplifying 
algebraic expressions? Answers to this question emanated 
from three main findings, which were sought from the 
three themes. First, majority of learners inappropriately 
recontextualize algebra systems and algorithms to those 
of integers resulting the irrelevant co-ordination of 
irrelevant simplification. Second, fragmented 
simplification was attributed by a blend of relevant and 
irrelevant contextualization of the simplification, 
resulting in distorted conceptual complexification of the 
expressions. Last, very few learners managed to 
appropriately complexify algebraic expressions through 
relevant recontextualization and coherent structures. 
However, when simplifying certain expressions, they 
applied only knowledge from the previous grade, which 
raised concerns on their conceptual progression. Hence, 
it implies that teaching and learning should capacitate 
learners first with algebra concepts, rules and systems 
preceded by skills of recontextualizing them to the 
domain of algebra during simplification. In conclusion, 
learners’ operational and structural conceptions of 
simplifying algebraic expressions were not 
complementary due to underdeveloped structures and 
systems algebra. This is attributed to the misuse of 
structures and systems from other discourses such as 
integers during recontextualization and complexifying 
of the expressions.  

The limitations are attributed to the focus only on 
available data, the learners’ responses to the 
simplification of algebraic expressions. Although DN is 
a useful tool to evaluate the results, it could have been 
worthy to probe learners to justify and clarify 
simplifications. Nonetheless, this study has reignited the 
dual conception of mathematical notions, which is key in 
understanding learners’ cognition. Hence, I suggest 
further empirical studies in this discourse should use 
various methods such as interviews to harvest some of 
the silent issues in the literature. 
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